1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// Copyright (c) The Libra Core Contributors
// SPDX-License-Identifier: Apache-2.0

#![forbid(unsafe_code)]

//! # Derive macros for crypto operations
//! This crate contains four types of derive macros:
//!
//! - the `SilentDebug` and SilentDisplay macros are meant to be used on private key types, and
//!   elide their input for confidentiality.
//! - the `Deref` macro helps derive the canonical instances on new types.
//! - the derive macros for `libra_crypto::traits`, namely `ValidCryptoMaterial`, `PublicKey`, `PrivateKey`,
//!   `VerifyingKey`, `SigningKey` and `Signature` are meant to be derived on simple unions of types
//!   implementing these traits.
//! - the derive macro for `libra_crypto::hash::CryptoHasher`, which defines
//!   the domain-separation hasher structures described in `libra_crypto::hash`
//!   (look there for details). This derive macro has for sole difference that it
//!   automatically picks a unique salt for you, using the Serde name. For a container `Foo`,
//!   this is usually equivalent to:
//!   ```ignore
//!   define_hasher! {
//!    (
//!         FooHasher,
//!         FOO_HASHER,
//!         b"Foo"
//!     )
//!   }
//!   ```
//!
//! # Unions of Signing Traits, in detail
//!
//! Those types typically come into play when you need to accept several
//! alternatives at runtime for several signature and verification schemes
//! (ex: BLS or EdDSA, see below). In this case, it is possible to declare
//! a triplet of enum types that each describe a 'sum type' (coproduct) of these
//! alternatives. This happens to be a signing scheme itself (it has
//! canonical signature, signing & verifying key types, and verifies all
//! expected properties by trivial dispatch).
//!
//! The macros below let you define this type of union trivially under two conditions:
//! - that the variant tags for the enum have the same name, i.e. if the BLS variant for the
//!   `SignatureUnion` is `SignatureUnion::BLS(BLS12381Signature)`, then the variant of the
//!   `PublicKeyUnion` for BLS must also be `PublicKeyUnion::BLS`,
//! - that you specify the associated types `PrivateKeyType`, `SignatureType` and `PublicKeyType`
//!   for each of the three unions. `PrivateKeyType` provides the value for the
//!   `VerifyingKeyMaterial` and `PublicKeyMaterial` associated types, `PublicKeyType` provides the
//!   valid for the `SigningKeyMaterial` and `PrivateKeyMaterial` associated types and
//!   `SignatureType` provides the value for the `SignatureMaterial` associated type.
//!
//! ## Example
//!
//! ```ignore
//! # #[macro_use] extern crate crypto-derive;
//! use libra_crypto::{
//!     hash::HashValue,
//!     bls12381::{BLS12381PrivateKey, BLS12381PublicKey, BLS12381Signature},
//!     ed25519::{Ed25519PrivateKey, Ed25519PublicKey, Ed25519Signature},
//! };
//! use libra_crypto_derive::{
//!     SilentDebug, PrivateKey, PublicKey, Signature, SigningKey, ValidCryptoMaterial, VerifyingKey,
//! };
//!
//! /// Generic public key enum
//! #[derive(
//!     Debug, Clone, PartialEq, Eq, Hash, ValidCryptoMaterial, PublicKey, VerifyingKey,
//! )]
//! #[PrivateKeyType = "GenericPrivateKey"]
//! #[SignatureType = "GenericSignature"]
//! pub enum GenericPublicKey {
//!     /// Ed25519 public key
//!     Ed(Ed25519PublicKey),
//!     /// BLS12-381 public key
//!     BLS(BLS12381PublicKey),
//! }
//! /// Generic private key enum
//! #[derive(SilentDebug, ValidCryptoMaterial, PrivateKey, SigningKey)]
//! #[PublicKeyType = "GenericPublicKey"]
//! #[SignatureType = "GenericSignature"]
//! pub enum GenericPrivateKey {
//!     /// Ed25519 private key
//!     Ed(Ed25519PrivateKey),
//!     /// BLS12-381 private key
//!     BLS(BLS12381PrivateKey),
//! }
//! /// Generic signature enum
//! #[allow(clippy::large_enum_variant)]
//! #[derive(Clone, Debug, PartialEq, Eq, Hash, Signature)]
//! #[PrivateKeyType = "GenericPrivateKey"]
//! #[PublicKeyType = "GenericPublicKey"]
//! pub enum GenericSignature {
//!     /// Ed25519 signature
//!     Ed(Ed25519Signature),
//!     /// BLS12-381 signature
//!     BLS(BLS12381Signature),
//! }
//! ```

#![forbid(unsafe_code)]

extern crate proc_macro;

mod hasher;
mod unions;

use hasher::camel_to_snake;
use proc_macro::TokenStream;
use proc_macro2::Span;
use quote::quote;
use std::iter::FromIterator;
use syn::{parse_macro_input, parse_quote, Data, DeriveInput, Ident};
use unions::*;

#[proc_macro_derive(SilentDisplay)]
pub fn silent_display(source: TokenStream) -> TokenStream {
    let ast: DeriveInput = syn::parse(source).expect("Incorrect macro input");
    let name = &ast.ident;
    let gen = quote! {
        // In order to ensure that secrets are never leaked, Display is elided
        impl ::std::fmt::Display for #name {
            fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
                write!(f, "<elided secret for {}>", stringify!(#name))
            }
        }
    };
    gen.into()
}

#[proc_macro_derive(SilentDebug)]
pub fn silent_debug(source: TokenStream) -> TokenStream {
    let ast: DeriveInput = syn::parse(source).expect("Incorrect macro input");
    let name = &ast.ident;
    let gen = quote! {
        // In order to ensure that secrets are never leaked, Debug is elided
        impl ::std::fmt::Debug for #name {
            fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
                write!(f, "<elided secret for {}>", stringify!(#name))
            }
        }
    };
    gen.into()
}

/// Deserialize from a human readable format where applicable
#[proc_macro_derive(DeserializeKey)]
pub fn deserialize_key(source: TokenStream) -> TokenStream {
    let ast: DeriveInput = syn::parse(source).expect("Incorrect macro input");
    let name = &ast.ident;
    let name_string = name.to_string();
    let gen = quote! {
        impl<'de> ::serde::Deserialize<'de> for #name {
            fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error>
            where
                D: ::serde::Deserializer<'de>,
            {
                if deserializer.is_human_readable() {
                    let encoded_key = <String>::deserialize(deserializer)?;
                    ValidCryptoMaterialStringExt::from_encoded_string(encoded_key.as_str())
                        .map_err(<D::Error as ::serde::de::Error>::custom)
                } else {
                    // In order to preserve the Serde data model and help analysis tools,
                    // make sure to wrap our value in a container with the same name
                    // as the original type.
                    #[derive(::serde::Deserialize)]
                    #[serde(rename = #name_string)]
                    struct Value<'a>(&'a [u8]);

                    let value = Value::deserialize(deserializer)?;
                    #name::try_from(value.0).map_err(|s| {
                        <D::Error as ::serde::de::Error>::custom(format!("{} with {}", s, #name_string))
                    })
                }
            }
        }
    };
    gen.into()
}

/// Serialize into a human readable format where applicable
#[proc_macro_derive(SerializeKey)]
pub fn serialize_key(source: TokenStream) -> TokenStream {
    let ast: DeriveInput = syn::parse(source).expect("Incorrect macro input");
    let name = &ast.ident;
    let name_string = name.to_string();
    let gen = quote! {
        impl ::serde::Serialize for #name {
            fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error>
            where
                S: ::serde::Serializer,
            {
                if serializer.is_human_readable() {
                    self.to_encoded_string()
                        .map_err(<S::Error as ::serde::ser::Error>::custom)
                        .and_then(|str| serializer.serialize_str(&str[..]))
                } else {
                    // See comment in deserialize_key.
                    serializer.serialize_newtype_struct(
                        #name_string,
                        serde_bytes::Bytes::new(&ValidCryptoMaterial::to_bytes(self).as_slice()),
                    )
                }
            }
        }
    };
    gen.into()
}

#[proc_macro_derive(Deref)]
pub fn derive_deref(input: TokenStream) -> TokenStream {
    let item = syn::parse(input).expect("Incorrect macro input");
    let (field_ty, field_access) = parse_newtype_fields(&item);

    let name = &item.ident;
    let (impl_generics, ty_generics, where_clause) = item.generics.split_for_impl();

    quote!(
        impl #impl_generics ::std::ops::Deref for #name #ty_generics
        #where_clause
        {
            type Target = #field_ty;

            fn deref(&self) -> &Self::Target {
                #field_access
            }
        }
    )
    .into()
}

#[proc_macro_derive(ValidCryptoMaterial)]
pub fn derive_enum_valid_crypto_material(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);

    let name = &ast.ident;
    match ast.data {
        Data::Enum(ref variants) => impl_enum_valid_crypto_material(name, variants),
        Data::Struct(_) | Data::Union(_) => {
            panic!("#[derive(ValidCryptoMaterial)] is only defined for enums")
        }
    }
}

#[proc_macro_derive(PublicKey, attributes(PrivateKeyType))]
pub fn derive_enum_publickey(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);

    let name = &ast.ident;
    let private_key_type = get_type_from_attrs(&ast.attrs, "PrivateKeyType").unwrap();
    match ast.data {
        Data::Enum(ref variants) => impl_enum_publickey(name, private_key_type, variants),
        Data::Struct(_) | Data::Union(_) => {
            panic!("#[derive(PublicKey)] is only defined for enums")
        }
    }
}

#[proc_macro_derive(PrivateKey, attributes(PublicKeyType))]
pub fn derive_enum_privatekey(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);

    let name = &ast.ident;
    let public_key_type = get_type_from_attrs(&ast.attrs, "PublicKeyType").unwrap();
    match ast.data {
        Data::Enum(ref variants) => impl_enum_privatekey(name, public_key_type, variants),
        Data::Struct(_) | Data::Union(_) => {
            panic!("#[derive(PrivateKey)] is only defined for enums")
        }
    }
}

#[proc_macro_derive(VerifyingKey, attributes(PrivateKeyType, SignatureType))]
pub fn derive_enum_verifyingkey(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);

    let name = &ast.ident;
    let private_key_type = get_type_from_attrs(&ast.attrs, "PrivateKeyType").unwrap();
    let signature_type = get_type_from_attrs(&ast.attrs, "SignatureType").unwrap();
    match ast.data {
        Data::Enum(ref variants) => {
            impl_enum_verifyingkey(name, private_key_type, signature_type, variants)
        }
        Data::Struct(_) | Data::Union(_) => {
            panic!("#[derive(PrivateKey)] is only defined for enums")
        }
    }
}

#[proc_macro_derive(SigningKey, attributes(PublicKeyType, SignatureType))]
pub fn derive_enum_signingkey(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);

    let name = &ast.ident;
    let public_key_type = get_type_from_attrs(&ast.attrs, "PublicKeyType").unwrap();
    let signature_type = get_type_from_attrs(&ast.attrs, "SignatureType").unwrap();
    match ast.data {
        Data::Enum(ref variants) => {
            impl_enum_signingkey(name, public_key_type, signature_type, variants)
        }
        Data::Struct(_) | Data::Union(_) => {
            panic!("#[derive(PrivateKey)] is only defined for enums")
        }
    }
}

#[proc_macro_derive(Signature, attributes(PublicKeyType, PrivateKeyType))]
pub fn derive_enum_signature(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);

    let name = &ast.ident;
    let public_key_type = get_type_from_attrs(&ast.attrs, "PublicKeyType").unwrap();
    let private_key_type = get_type_from_attrs(&ast.attrs, "PrivateKeyType").unwrap();
    match ast.data {
        Data::Enum(ref variants) => {
            impl_enum_signature(name, public_key_type, private_key_type, variants)
        }
        Data::Struct(_) | Data::Union(_) => {
            panic!("#[derive(PrivateKey)] is only defined for enums")
        }
    }
}

// There is a unit test for this logic in the crypto crate, at
// libra_crypto::unit_tests::cryptohasher — you may have to modify it if you
// edit the below.
#[proc_macro_derive(CryptoHasher)]
pub fn hasher_dispatch(input: TokenStream) -> TokenStream {
    let item = parse_macro_input!(input as DeriveInput);
    let hasher_name = Ident::new(
        &format!("{}Hasher", &item.ident.to_string()),
        Span::call_site(),
    );
    let snake_name = camel_to_snake(&item.ident.to_string());
    let static_seed_name = Ident::new(
        &format!("{}_SEED", snake_name.to_uppercase()),
        Span::call_site(),
    );

    let static_hasher_name = Ident::new(
        &format!("{}_HASHER", snake_name.to_uppercase()),
        Span::call_site(),
    );
    let type_name = &item.ident;
    let param = if item.generics.params.is_empty() {
        quote!()
    } else {
        let args = proc_macro2::TokenStream::from_iter(
            std::iter::repeat(quote!(())).take(item.generics.params.len()),
        );
        quote!(<#args>)
    };

    let out = quote!(
        /// Cryptographic hasher for an LCS-serializable #item
        #[derive(Clone)]
        pub struct #hasher_name(libra_crypto::hash::DefaultHasher);

        static #static_seed_name: libra_crypto::_once_cell::sync::OnceCell<[u8; 32]> = libra_crypto::_once_cell::sync::OnceCell::new();

        impl #hasher_name {
            fn new() -> Self {
                let name = libra_crypto::_serde_name::trace_name::<#type_name #param>()
                    .expect("The `CryptoHasher` macro only applies to structs and enums");
                #hasher_name(
                    libra_crypto::hash::DefaultHasher::new(&name.as_bytes()))
            }
        }

        static #static_hasher_name: libra_crypto::_once_cell::sync::Lazy<#hasher_name> =
            libra_crypto::_once_cell::sync::Lazy::new(|| #hasher_name::new());


        impl std::default::Default for #hasher_name
        {
            fn default() -> Self {
                #static_hasher_name.clone()
            }
        }

        impl libra_crypto::hash::CryptoHasher for #hasher_name {
            fn seed() -> &'static [u8; 32] {
                #static_seed_name.get_or_init(|| {
                    let name = libra_crypto::_serde_name::trace_name::<#type_name #param>()
                        .expect("The `CryptoHasher` macro only applies to structs and enums.").as_bytes();
                    libra_crypto::hash::DefaultHasher::prefixed_hash(&name)
                })
            }

            fn update(&mut self, bytes: &[u8]) {
                self.0.update(bytes);
            }

            fn finish(self) -> libra_crypto::hash::HashValue {
                self.0.finish()
            }
        }

        impl std::io::Write for #hasher_name {
            fn write(&mut self, bytes: &[u8]) -> std::io::Result<usize> {
                use libra_crypto::hash::CryptoHasher;

                self.0.update(bytes);
                Ok(bytes.len())
            }
            fn flush(&mut self) -> std::io::Result<()> {
                Ok(())
            }
        }

    );
    out.into()
}

#[proc_macro_derive(LCSCryptoHash)]
pub fn lcs_crypto_hash_dispatch(input: TokenStream) -> TokenStream {
    let ast = parse_macro_input!(input as DeriveInput);
    let name = &ast.ident;
    let hasher_name = Ident::new(&format!("{}Hasher", &name.to_string()), Span::call_site());
    let error_msg = syn::LitStr::new(
        &format!("LCS serialization of {} should not fail", name.to_string()),
        Span::call_site(),
    );
    let generics = add_trait_bounds(ast.generics);
    let (impl_generics, ty_generics, where_clause) = generics.split_for_impl();
    let out = quote!(
        impl #impl_generics libra_crypto::hash::CryptoHash for #name #ty_generics #where_clause {
            type Hasher = #hasher_name;

            fn hash(&self) -> libra_crypto::hash::HashValue {
                use libra_crypto::hash::CryptoHasher;

                let mut state = Self::Hasher::default();
                lcs::serialize_into(&mut state, &self).expect(#error_msg);
                state.finish()
            }
        }
    );
    out.into()
}

fn add_trait_bounds(mut generics: syn::Generics) -> syn::Generics {
    for param in generics.params.iter_mut() {
        if let syn::GenericParam::Type(type_param) = param {
            type_param.bounds.push(parse_quote!(Serialize));
        }
    }
    generics
}